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ABSTRACT 

All networks are formed by the use of dissipators and storage elements. In 
addition, in order to couple one network with another, transformers and transducers 
are utilized. These facts are well known in the electrical field, but not so well known 
in the other disciplines. 

The purpose of this general paper is to show how some common devices may 

be coupIed one to the other to form energy networks. The mathematics of coupling 
follows the work of Oskar Lange in which a general mode of mathematical description 
for all networks is developed, through the use of matrix algebra. 

Two simple examples are deveIoped in the paper which are soluble without 
computer assistance. However, the greatest advantage of the technique is its compact- 
ness of notation and the ability to extend the technique to large and compIex networks. 

NOhiENCLATURE 

F generalized through variable 

P generalized across variable 

4 heat flow 

T torque 
force 

u, V velocity 

Q volumetric flow rate 

4 pressure drop 

M, m mass 
AT temperature difference 

r gear radius 
N number of gear teeth 

CP specific heat 
A cross-sectional area 
AH, heat of vaporization 
T connectivity matrix 

a element in T 



unit column matrix 
entity stored (mass, heat, etc.) 
energy (kinetic, potential, enthalpy) 
enthalpy 
constant 
heat flux column vector 
work flux (power) column vector 
energy storage column vector 
heat to boiler 
heat out at condenser 
heat lost in pipelines 
work out at turbine 
angular velocity 

Sribscrip 1s 

u vapor 

P constant pressure 

Srrperscripis 
C condenser 

FV!J” work in at pump 
0 -Tc total energy for cycle 

TRANSFORMERS AND TRANSDUCERS 

Transformers (energy-energy Iransforiners) 
The network transformer thought of 

former shown schematically in Fig. 1; this 
together so that energy may be transferred. 

A number of other forms are known 

most frequently is the electrical trans- 
device couples two electrical networks 

(see Fig. 2) in systems theory2 such as 
the simpIe lever (couples two mechanical networks) , gears (couples two mechanical 
networks) and fluid transformers (couples two fluid networks). However, it is possible 
to look at heat exchangers as thermal transformers, as shown in Fig. 3. More im- 
portantly, the function and mathematical models of transformers match that of the 
heat exchanger. In Table 1 the mathematical models for a few transforming devices 

Fig. 1. An electrical transformer coupling two electrical networks. 
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Mechanical Networks Coupled 
(a) 

A Pistons 

Mechanical Network Coupled 
(b) 

Fluid Networks Coupled 
(cl 

Fig. 2. Transformers coupling networks. 

~~~~) 

Fig. 3. A thermal transformer. 

compared to the heat exchanger are shown. A name for a heat exchanger might now 

be a heat energy or thermal transformer. The usual definition of a pure transformer 
is that it is a device which changes the level of output variables relative to input 
variables yet sustains no power loss in the transformation. This may be written from 
a power balance generally as 
Power in = Power out 

F,P, = FzPz (1) 

F represents a generalized variable (the flow in system); P represents a generalized 
cross variable (potential or driving force in system); I,2 input and output at terminals, 
respectively (ground potential not shown). 

Note that in Table 1 the simple power balance in (1) is used assuming no losses 
of storage through the units. The only unfamilie- case is that of the thermal trans- 
former, since 

CIl = Q2 (2) 

This assumes no heat loss in the unit which is similar to the statement that power is 
not lost in the transfer of power through the usual transformers. There 

C,,nz,AT, = CP,X2AT, 
or 
C,,AT, = Cr2AT2 
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r-l Electrical 
Network 

Pneumatic + cmprasser - Mectmicol 
Network Network 

Compresser 

(Mechanical to Pneumatic) 
(91, 

C3as or Steam Turbine 
(Heat to Mechanical) 

(b) 

Fig. 4. Transducers coupling networks. 

Fluid 
Nefwark Electrical 

Network 

I 1 

Centrifuqal Pump 

(Two Step System) 

(a) 

LI 

Oenerator 

(Mechanical to Electrical ) 
(C) 

Mech. 
(Linear] 

Mech. 

I4 (Rotary) 

\A 

Rack and Pinion 
(Linear Mechanical to 
Rotary Mechanical or 
the reverse) 

(Electrica;; Mechanical) 

+ 

ddechanical to Fluid 
(4 

Fig. 5. Transducers coupling networks 

AT, C,, -=- 
AT, Cr, 

(3) 

This equation is quite similar to the other usual forms of relative potentials to some 
geometrical aspect of the system (gear diameter, fulcrum distances from effort or 

load, turns in electrical transformer and area of fluid transformer pistons). 

Tramdrrcers 
Energy-energy. Devices for the transduction of energy are also quite common 

and are shown in Fig. 4. Note here again that transducers couple networks so that 
energy may flow between networks. A two-step transduction has been broken into 
its components in order to indicate transducer coupling. Other usual simple trans- 
ducers are shown in Fig. 5. 
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vapor carryinq energy vapor carrying energy 

~~,~aA$y ‘,~~~:ic qY$y 

Chemical Reaction orken Electrical Energy 

Fig. 6. Energy-matter transducers. 

Recall that the definition of a transducer is that it is device which transforms 
energy or power in one form into energy or power in another form. If no energy 
losses are permitted then generaIIy 

F,P, = FzPz (4) 

This equation is identical to the one used for transformers. 
Eftergy-matter or energy-energy. It is possible to think of boilers, tea kettles, 

etc. as both energy-matter and energy-energy transducers (see Fig. 6). A boiler 
being fired by hot gases produces steam (which carries energy) in proportion to the 
heat transferred to the water. If one puts a boiler (or tea kettle) in a black box with 
energy going into one pipe and steam issuing through another pipe then all we would 
kilow is that when more energy is added into the box more steam issues. One may 
then state that a phase transition mass transfer device driven by energy (or the 
removal of it) is an energy-matter transducer. A steam condenser is the reverse 
type of transducer - the more steam condensed the more heat that must be carried 
away with the cooling water_ 

In these types of transducers a distinct bi-functionality exists in the transported 
matter; the matter (steam) carries energy and both increase in outflow from a boiler 
boiler when energy is added. 

Simple boiler eqriations 

The mathematical model for 

Q, = m2AH,. 

this transduction step (assuming no heat losses) is 

(5) 

Q, = heat flux into boiler water from chemical reaction or electrica degradation 
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step, heat/unit time; 112 z = mass of steam emitted from boiler/unit time; AH, = heat 
of vaporization of steam, heat/unit mass; or 

0 
-& = iiz 2 (6) 

which relates now the net heat flux into the boiler system to mass flow rate (mass 
flux). AH, is assumed constant here. 

Sinzple coizdeizser eqrtatioiz 

The mathematical model which relates steam (vapor) condensed in a heat 
exchanger to heat absorption is shown below assuming no heat losses through 
condenser shell 

Q”, = heat absorbed by exchanger through water cooling system; I~Z; = mass of 
steam or vapor condensed in exchanger per unit time; AH,. = heat of vaporization 
or condensation in heat/unit mass. 

If as an approximation losses through the shell are neglected, then 

ST - = m; 
AH, (8) 

The greater the heat absorption by the cooling water the higher the mass of 
vapor condensed. This is defined as a transduction step. 

Transducers and transformers can be connected into complex configurations 

in order to accomplish some purpose. These connections may be shown quite simply4 
in matrix form. The remainder of this paper will indicate how these connections can 
be shown and two simple examples of its use will be given. 

CONNECTIVITY AND THE FLOW OF ENTITY 

T/ze Kirclzlzofl rzzatris 

It is possible to assemble elements, units, or nodes into a network which has 
as its branches flows of some entity such as charge, energy, fluid, people, products, 
etc. AI1 networks formed by man or nature3 have a rational basis for existence. 
Figure 7 shows a three-element network so connected that all elements interact with 
all other elements and with themselves. The connectivity may be put into a matrix 
form as 

However, not only are the elements signailed by subscripts to indicate con- 
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a33 

Fig. 7. A three-element network. 

nections but the elements themselves may indicate the transport of mass and energy 
(or power), i.e. 

all7 022~ a33 feed back flow of some entity to elements; 

arzT aI3 flow out of some entity element (1); 

az17 a23 Aow out of some entity element (2); 

a317 a32 flow out of some entity element (3). 
These elements as written above can constitute the rows in the square matrix, 

therefore elements of node outputs are formed in the rows of the connection-transport 
matrix. The columns then indicate the inputs into elements or nodes as 

all7 at,, a3] inputs into element (1); 

arz9 at2, a32 inputs into element (2); 

a13. a23r a33 inputs into element (3). 
This simple matrix then indicates all input and output flows of entity for a 

given system (net_work). If we could relate them a Kirchhoff form of expression might 
be developed. This is easily done by obtaining the transposition of (10) and sub- 
tracting it from (10) as 

or 

all) (a,2 - azl) (aI3 - a31) 
a12) ((122 - a22) Ca23 - a32) 

al,) ta32 - a23) (a33 - a331 1 

(10) 

(11) 

At this point it is noticed that what has been done is to evaluate the net flow out of 
each element. The principa1 diagonal terms cancel Ieavinz the interaction (off- 
diagonal) elements. If the matrix in (12) is post-multiplied by a column matrix 
then a row summation is achieved. 

0 f al2 - a,, t aI3 - a31 
(T- T*) = azl - al2 0 a23 - a32 

I 

(12) 

a31 - al3 t a32 - a23 0 
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The simple Kirchhoff expression for the system is 

0 + Lz12 - uZ1 f aI3 - aSI = 0 

a,, - a,, + 0 t az3 - a32 = 0 

a31 - al3 + a32 - a23 f 0 = 0 

So that 

(13) 

al2 T ’ a13 - a21 - a3I = 0 

a2l -i- a23 - a,2 - a32 = 0 (14) 
a31 + as2 - aI3 - a23 = 0 

or generally in matrix form 

(T - T*)I, = ii (15) 

This Kirchhoff matrix expression is valid for the flow of any entity in any net- 
work. In any practical problem not all branches are operative which means that not 
all the a's are utilized. In the three-element problem only three flows can be unknown; 
or generally for an zz-noded network only zz number of entity flows can be unknown. 

Contirzrtiry of eiztity 

Expression (16) as developed assumes no accumulation or depletion in the 
elements. This facet of the analysis is necessary since many systems do store entity 

(charge, mass, people, energy). Let ii = amount of entity stored initially (t = 0); 
j, = amount of entity stored finally (t = t); Aj = amount of entity accumulated or 
depleted in time t. The continuity equation for networks may be written as 

net flow 
i,! 

accumulation 
_!- or ) 

\ ( 

.= 

\ 

0 

out of entity depletion of entity 

Therefore using Aj in matrix form 

(T - T*)Tc f Aj = b 

r 
Steam 
Network 

# Boundary Nodes 

(16) 

(17) 

Fig. 8. Schematic (a) and network diagrams (b) for steam nozzle. 
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Equation (17) can be used to evaluate depletion, accumulation and network 

branch flows in large, complex networks4. 
Exumpk: rile steam no32 le. An example of the use of the continuity matrix 

expression is indicated below. Consider a steam nozzle; this might couple two steam 

piping networks which perform some processing function_ It is proposed here to study 
the system from a network basis (see Fi g. S). This simple problem is instructive since 
it clearly indicates the absorption and rejection of energy (enthalpic and kinetic 

energy) out of and into storage elements or nodes. if no heat Ioss to the environment 
exists through the nozzIe body or lines connecting the reservoirs then the probIem 
is quite simple. The connection-transport matrix is 

T= E 1’2 +] 

The transpose of (18) is 

(IS) 

r 0 0 0 
=j=*= E 

t 
12 0 0 

0 &,O I 
Assuming no storage of energy in the nozzle (2) then 

(T - T*) 7, f Aj = 

So that 

(19) 

(20) 

E 12 = -41 
E - E,, = 0 
-‘;,, z= 

(21) 
- A& 

Equations (21) indicate what is happening. The source of energy is depleting 

at an El2 rate*; the sink of energy is filIing (accumulating) at an Ez3 rate. 
Since no storage is occurring at (2) then E23 - El2 = 0. The usual expression 

is shown as 

v: 
h, + - - %, h, f g- = 0 

c 
(22) 

The source steam network is losing energy at a El2 or h, t V:/2g, rate and 
the sink steam network is gaining energy at a rate of 1z2 f Vf/2g,. Note that usually 
flowing steam velocity and pressures are changed as they have through the nozzle - 
this is a transforming step. 

l El? is usually an energy/unit mass. If this is multiplied by the mass rate or flow then energy rate or 
power is obtained. 
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Another important aspect of networks is shown in this example; the boundary 
nodes (1) and (3) are apparent since they either have inputs or outputs, but not both. 

Overall system balances (energy, matter, charge) can be made by studying 
the boundary nodes inputs and outputs. 

Emrgy tzetwork vecfors (j?rst law of tl?er??zon~ilarnics). Equation (23) is shown 
below as the usual energy equation in vector form. It is then possible to speak of 
thermodynamic networks as having heat vectors, work vectors, energy flow vectors 
and energy storage vectors*. 

Heat vector Work vector Energy flow vector Energy storage 
Q - w = QIl”l, f z 

The matrix b,, is composed of row (or column) vectors which are 

vector 

(23) 
each related to 

the flows into and out of all nodes. Also the elements in this matrix are not simple 
and they themselves are the scalars resulting from the multiplication of energy and 
unit vectors. 

Since generally it is now shown that d,, = T - T*, then for energy (note 
eqn. 17), D,, = E - .j7* 

anz-l = 

6, E,z El3 E,,*-- G, 
E2, E E23 22 

E,, etc. 
E 41 

E nl 

7 

I - 
But actually 

so that 

-61 E2, E31 %, 

E 7 E22 E23 

E:; etc. 
E 14 

E _ In 

1 

I (24) 

._ 

* Heat and work could be defined as storage vectors; it has not been done here in order to hold 
similarity to the first law forms. 



Fig. 9. Steam power plant (schematic). 

Fig. 10. Steam power plant network. 

Example of USC of matrix method_ sinrple power plant Iletwork. Energy matrix. 
An example of the apphcation of this network technique is indicated by using the 
steam power example given by Van Wylen and Sonntag5. It is instructive to compare 
the approach by these authors and the use of a generalized network mathematics. 

The diagram of the steam power plant is indicated in Fig. 9. Figure 10 is a 
network representation of the same plant. Note that the plant is simple with a quite 
obvious cyclic nature. 

The transforming and transducing elements in this power system are 

Unit 

Boiler Energy-matter Transducer 
Matter-energy Transducer 
Energy-energy Transducer 

Condenser __ Matter-energy Transducer 
(Can also be used in the form of a transformer) 
Pump Energy-energy Transducer 
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Imagine, in each of the above cases, that you placed the unit in a black box and 
operated the unit. Noting what happens to changes in matter and energy variables, 

as one or the other is modified, gives one a clear idea of energy flows. 

For the system shown in Fig. 9, find 
(a) the heat transfer in line between boiler and turbine, qPl; 
(b) turbine work, I%‘*; 
(cc> heat transferred in condenser, q,.; 
(d) heat transferred in boiler, qb. 

from the given data (from Van Wylen and 

E,, = 1315 BTU)lb EJ5 = 1045 BTU/lb 
EZ3 = 1289 BTU/lb E,, = 78 BTU/lb 
Applying eqn. (23) to this example gives 

Sonntag’): 

E,, = ? 
W,, = 3 BTU/lb 

61 

[ 

&2 El3 h4 J%- 

E2, ‘% E23 E24 E25 

E31 E32 E33 E34 E35 

E4, E42 E43 E44 Es5 

E5, E52 E53 E5.a E55_ 

This is the energy form of (23) - not power. 

0 

0 

wl- 
i 

[ I’ = .,’ 
0 

twp, ! 

‘& &I E3, Eu Es,- 

El2 E22 E32 E42 672 

El3 E23 E33 Es3 Es3 

El4 E24 Es4 Et4 E54 

.E,s E25 E35 Li E55, 1 (27) 

Since there are no feedbacks on the individual equipment nodes a number of 
elements in the energy matrix are zero. Note also self-looping is zero (E,,, Ez2, 
etc. = 0). 

i 0 0 0 0 E,,O 0 0 0 El20 0 0 0 El,0 0 0 0 E330 0 0 0 E,! 

Expression (42) may be written as 

_I- 1 c7B = 4, - &I 

+qpl = E 23 - E12 

- W, = E34 - Ez3 

-i-q= = E 45 - E34 

- WplJ = E51 - E45 

Total eizergy requirement for plant 

5 

1 

‘0 0 0 0 Es,’ 
El20 0 0 0 
0 Ez,O 0 0 
0 0 EJAO 0 

P 0 0 Es5 0 . I[1 i 1 
I 

I 

\ 

1 

1 

(28) 

(29) 

The total net energy requirement for the cycle is obtained by considering the 
inputs and outputs; those considered would be only those items from or into the 

environment. 
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For the cycle 

l- 
1 
1 

El-= = G-g,, +q,,, 0, +qc, 0) 

il 

1 -k a 0, -i-w,, 0, -l-W,“> 

1 
1 

ETc = (qB + qpl + qc) + cwT f- wp”, 

For a true cycle ETc = 0 and therefore 

(rla t qp1 -!- (II,) + (wr f &“) = o 

Nmnerical solution 

1’ 
1 

[. 

I 
1 
1 

(30) 

(31) 

See Van Wylen and Sonntag5 for their detailed assumptions and solutions). 

(1) No heat is lost or gained throughout the system aside from those stated. 
(2) No kinetic energy and potential energy changes. 
(3) No heat storage, Aj = 0. 
Energy equation (see eqn. (28) or (29) 

qB = 1315 - ES1 

qPl = 1289 - 1315 
- wr = 1045 - 1289 

(Jc = 78 - 1045 
+3 = E,, - 78 

(wanted) qB = 1315 - E,, 
(wanted) qpl = -26 Btu/lb 
(wanted) W, = f244 Btu/lb 
(wanted) qc = -967 Btu/lb 

E51 = +81 Btu/lb 
qB = 1315 - 81 = +1234Btu/lb 

Consequently the overall boundary node energy balance (see eqn. (30)) 

(33) 

(34) 
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I-* 
1 

ErC = (1234, -26,0, -967,O) 1 1. t (0, 0, +244,0, -3) 
1 

1 I 
ETC = (1234 -26 -967) + (244 -3) 
ETc = 241 -241 

ETC = 0 Btu/lb 
Since ETc = 0 the cycle is a true thermodynamic cycle. 

CONCLUSIONS 

1 

1 [I 1 
1 
1 

(1) The usual energy converters are shown in the paper as transducers. 
(2) A simple method is indicated which forms a connection matrix for trans- 

ducer and transformer networks. 
(3) Using the first law of thermodynamics it is possible to cast that law into a 

scalar matrix expression for computation use. 
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